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Lemma(Erdés-Moon). LetG be an n-vertex graph of edge density p s.t

1
e(G) = p(n) > —sMtin2 s + 2sn.
2 2
Then, #{copies of Ky in G}> Q(pszn%).
Remark. This is a quantified version of supersaturation lemma for Kj ;.
Proof. Let M =#{pair (v,S) where S C N(v)}. Obviously,
d(v)
M = .
> (V)
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V subsets S of size s, let f(s) be the number of vertices v s.t S C N(v). We have
M= > f(s).
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Noting that
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we have ZSG(‘;) f(s) = Q(p*n*T1). On the other hand, #{copies of K, s in G}= 1 ZSE(‘;) (f S)),
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Question. Why do we use the condition of this lemma?

Theorem 1. For ¢t > 2 and k, 3 constant Ck(t) > 0 s.t the following holds:

Any k-graph with e(G) = (}) > C’k(t)nk_(%)k_l has at least Q(p'" n'*) copies of Ky
Remark. Case k = 2 is just the Erdés-Moon.

Theorem 2(K-S-T for hypergraph). For ¢t > 2,

P

exy(n, Kyg) = O(nk_(

).
Remark 1. This implies 7(Kyx) = 0.

Remark 2. Theorem 1 can imply theorem 2.



e Proof of Theorem 2. Assumiln% Theorem 1 holds for k — 1, we suppose there is a Kj..-free
k-graph G with e(G) = w(n®=(¥) _1).
(Note :m(n) = w(n) means m(n)/n has a sufficiently large lower bound for sufficiently
large n)
Recall : Let H be a k-graph with (d—1)n+t edges, then H has a subgraph J with §(J) > d
and |V (J)| > t*.
= J asubgraph of G with §(.J) > w(nf~1=(1)"~") which is much larger than O((nF~1=()"7%)).
Then the link hypergraph J, for v € V(J) is a (k-1)-graph with

8(J) > w(nk1=(
where m = |V (J,)|. By Theoreml, J, has
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)tk—lmt(k—l)) _ w(mt(kz—l)—l)

copies of Ky, (x_1)-
= 3 w(m'k=) copies of (v, K) where K = Ki.(k—1) C Ju-
By Pigeonhole Principle, 3 a fixed K = Ky,,_1) and vi..vp € V(J) st K C Jy, Vi
= 3 K, = K U{v;...v4} which is a contradiction. This proves Theorem 2. |
e Proof of Theorem 1. By induction on k. Base case k = 2 is just the Erd6s-Moon
Theorem.
Suppose it holds for (k-1)-graphs. Given a k-graph G with e(G) = p(};‘) = Q(nki(%
Let Vi ={v eV :dv)> Ck(t)nk_l_(%)kﬂ} and Vo = V\V1. Since
3" d(v) <O D) <<k x (@),
veEVs

kfl)

) .

almost all edges of G are in V.
For S € (‘;(Ci)) where ¢...t contains (k — 1) t's, Let

f(S)=#{v e V(G) : vU S induces a Kﬁ)t in G} where t...t contains (k — 1) t's.

For v € Vi, the link hypergraph G, is a (k-1)-graph with d(v) > C,yg(t)nl’c_l_(%)kf2 edges.
By induction on k — 1 for G, G, has
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(k-1)-graphs.
Claim : #{k") , in G}
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where ¢...t contains (k — 1) ¢'s.

On the other hand,#{K{i)__.t in G}:ZSE(V(G)) f(S). Therefore #{K; in G}=

1 f(s) -1y 22 f(S)!
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where t...t contains (k — 1) t's.
e Question. Why do we need e(G) > Q(nkf(%)kfl)?

e Remark. Theoreml does imply Theorem2. Let p = n~ (""" 5o that p(}) > (nk_(%)k_l),
then Theorem1 gives Q(ptkntk) = Q(n'*~*) copies of Ky.;. This proves Theorem 1. ]



