Extremal and Probabilistic Graph Theory March 10

• Lemma(Erdős-Moon). Let G be an n-vertex graph of edge density p s.t

$$e(G) = p\binom{n}{2} \ge \frac{1}{2}s^{1+\frac{1}{s}}n^{2-\frac{1}{s}} + 2sn$$

Then, #{copies of $K_{s,s}$ in G} $\geq \Omega(p^{s^2}n^{2s})$.

- **Remark.** This is a quantified version of supersaturation lemma for $K_{s,s}$.
- **Proof.** Let $M = \#\{\text{pair } (v, S) \text{ where } S \subset N(v)\}$. Obviously,

$$M = \sum_{v \in V(G)} \binom{d(v)}{s}.$$

 \forall subsets S of size s, let f(s) be the number of vertices $v \ s.t \ S \subset N(v)$. We have

$$M = \sum_{S \in \binom{V}{s}} f(s)$$

Noting that

$$\frac{M}{n} = \frac{\sum_{v \in V(G)} {\binom{d(v)}{s}}}{n} \ge {\binom{\sum d(v)}{n}}{s} = \Omega((pn)^s),$$

we have $\sum_{s \in \binom{V}{s}} f(s) = \Omega(p^s n^{s+1})$. On the other hand, $\#\{\text{copies of } K_{s,s} \text{ in } G\} = \frac{1}{2} \sum_{s \in \binom{V}{s}} \binom{f(s)}{s}$,

$$\frac{1}{2}\sum_{S\in\binom{V}{s}}\binom{f(s)}{s} \ge \frac{1}{2}\binom{n}{s}\binom{\frac{\sum_{S\in\binom{V}{s}}f(s)}{\binom{n}{s}}}{s} \ge \Omega(1)n^s(p^sn)^s = \Omega(p^{s^2}n^{2s}).$$

- Question. Why do we use the condition of this lemma?
- Theorem 1. For $t \ge 2$ and k, \exists constant $C_k(t) > 0$ s.t the following holds: Any k-graph with $e(G) = \binom{n}{k} \ge C_k(t)n^{k-(\frac{1}{t})^{k-1}}$ has at least $\Omega(p^{t^k}n^{tk})$ copies of $K_{t:k}$.
- **Remark.** Case k = 2 is just the Erdős-Moon.
- Theorem 2(K-S-T for hypergraph). For $t \ge 2$,

$$ex_k(n, K_{t:k}) = O(n^{k - (\frac{1}{t})^{k-1}}).$$

- Remark 1. This implies $\pi(K_{t:k}) = 0$.
- Remark 2. Theorem 1 can imply theorem 2.

• **Proof of Theorem 2.** Assuming Theorem 1 holds for k-1, we suppose there is a $K_{t:k}$ -free k-graph G with $e(G) = \omega(n^{k-(\frac{1}{t})^{k-1}})$.

 $(\mathbf{Note}: m(n) = \omega(n)$ means m(n)/n has a sufficiently large lower bound for sufficiently large n)

Recall : Let *H* be a k-graph with (d-1)n+t edges, then *H* has a subgraph *J* with $\delta(J) \ge d$ and $|V(J)| \ge t^{\frac{1}{k}}$.

 $\Rightarrow \exists \text{ a subgraph of } G \text{ with } \delta(J) \geq \omega(n^{k-1-(\frac{1}{t})^{k-1}}) \text{ which is much larger than } O((n^{k-1-(\frac{1}{t})^{k-2}})).$ Then the link hypergraph J_v for $v \in V(J)$ is a (k-1)-graph with

$$\delta(J) \ge \omega(n^{k-1-(\frac{1}{t})^{k-1}}) \ge \omega(m^{k-1-(\frac{1}{t})^{k-1}})$$

where $m = |V(J_v)|$. By Theorem 1, J_v has

$$\Omega((\frac{d(v)}{\binom{m}{k-1}})t^{k-1}m^{t(k-1)}) = \omega(m^{t(k-1)-1})$$

copies of $K_{t:(k-1)}$.

 $\Rightarrow \exists \ \omega(m^{t(k-1)}) \text{ copies of } (v, K) \text{ where } K = K_{t:(k-1)} \subset J_v.$

By Pigeonhole Principle, \exists a fixed $K = K_{t:(k-1)}$ and $v_1...v_t \in V(J)$ s.t $K \subset J_{v_i} \forall i \Rightarrow \exists K_{t:k} = K \cup \{v_1...v_t\}$ which is a contradiction. This proves Theorem 2.

• **Proof of Theorem 1.** By induction on k. Base case k = 2 is just the Erdős-Moon Theorem.

Suppose it holds for (k-1)-graphs. Given a k-graph G with $e(G) = p\binom{n}{k} = \Omega(n^{k-(\frac{1}{t}^{k-1})})$. Let $V_1 = \{v \in V : d(v) \ge C_k(t)n^{k-1-(\frac{1}{t})^{k-2}}\}$ and $V_2 = V \setminus V_1$. Since

$$\sum_{v \in V_2} d(v) \le O(n^{k - (\frac{1}{t})^{k-2}}) << n^{k - (\frac{1}{t})^{k-1}} \approx e(G),$$

almost all edges of G are in V_1 .

For $S \in \binom{V(G)}{t...t}$ where t...t contains (k-1) t's, Let $f(S) = \#\{v \in V(G) : v \cup S \text{ induces a } K_{1,t...t}^{(k)} \text{ in } G\}$ where t...t contains (k-1) t's.

For $v \in V_1$, the link hypergraph G_v is a (k-1)-graph with $d(v) \ge C_k(t)n^{k-1-(\frac{1}{t})^{k-2}}$ edges. By induction on k-1 for G_v , G_v has

$$\Omega((\frac{d(v)}{\binom{n}{k-1}})t^{k-1}n^{t(k-1)}) = \Omega((d(v))^{t^{k-1}}n^{(k-1)t-(k-1)t^{k-1}})$$

(k-1)-graphs.

Claim : $\#\{K_{1,t...t}^{(k)} \text{ in } G\}$

$$\geq \sum_{v \in V_1(G)} \Omega((d(v))^{t^{k-1}} n^{(k-1)t - (k-1)t^{k-1}})$$

$$\geq n(\frac{\sum d(v)}{n})^{t^{k-1}} \Omega(n^{(k-1)t - (k-1)t^{k-1}})$$

$$= e(G)^{t^{k-1}} \Omega(n^{(k-1)t - (k-1)t^{k-1} + 1 - t^{k-1}})$$

$$= p^{t^k} \Omega(n^{(k-1)t+1})$$

$$= \Omega(p^{t^k} n^{(k-1)t+1})$$

where t...t contains (k-1) t's. On the other hand, $\#\{K_{1,t...t}^{(k)} \text{ in } G\} = \sum_{S \in \binom{V(G)}{t...t}} f(S)$. Therefore $\#\{K_{t:k} \text{ in } G\} =$

$$\begin{split} \frac{1}{k} \sum_{S \in \binom{V}{t...t}} \binom{f(s)}{t} &\geq & \Omega(n^{t(k-1)}) \frac{\sum f(S)^t}{|\binom{V}{t...t}|} \\ &\geq & \Omega(n^{t(k-1)}) (\frac{\sum f(S)}{n^{t(k-1)}})^t \\ &\geq & \Omega(n^{t(k-1)}) (p^{t^{k-1}}n)^t \\ &= & \Omega(p^{t^k} n^{tk}) \end{split}$$

where t...t contains (k-1) t's.

- Question. Why do we need $e(G) \ge \Omega(n^{k-(\frac{1}{t})^{k-1}})$?
- **Remark.** Theorem1 does imply Theorem2. Let $p \approx n^{-(\frac{1}{t})^{k-1}}$ so that $p\binom{n}{k} \geq (n^{k-(\frac{1}{t})^{k-1}})$, then Theorem1 gives $\Omega(p^{t^k}n^{tk}) = \Omega(n^{tk-t})$ copies of $K_{t:k}$. This proves Theorem 1.