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• Lemma(Erdős-Moon). LetG be an n-vertex graph of edge density p s.t

e(G) = p

(
n

2

)
≥ 1

2
s1+

1
sn2−

1
s + 2sn.

Then, #{copies of Ks,s in G}≥ Ω(ps
2
n2s).

• Remark. This is a quantified version of supersaturation lemma for Ks,s.

• Proof. Let M =#{pair (v, S) where S ⊂ N(v)}. Obviously,

M =
∑

v∈V (G)

(
d(v)

s

)
.

∀ subsets S of size s, let f(s) be the number of vertices v s.t S ⊂ N(v). We have

M =
∑

S∈(Vs)

f(s).

Noting that

M

n
=

∑
v∈V (G)

(
d(v)
s

)
n

≥
(∑

d(v)
n

s

)
= Ω((pn)s),

we have
∑

S∈(Vs) f(s) = Ω(psns+1).On the other hand, #{copies ofKs,s inG}= 1
2

∑
S∈(Vs)

(
f(s)
s

)
,

1

2

∑
S∈(Vs)

(
f(s)

s

)
≥ 1

2

(
n

s

)(∑
S∈(Vs)

f(s)

(ns)
s

)
≥ Ω(1)ns(psn)s = Ω(ps

2
n2s).

• Question. Why do we use the condition of this lemma?

• Theorem 1. For t ≥ 2 and k, ∃ constant Ck(t) > 0 s.t the following holds:

Any k-graph with e(G) =
(
n
k

)
≥ Ck(t)nk−(

1
t
)k−1

has at least Ω(pt
k
ntk) copies of Kt:k.

• Remark. Case k = 2 is just the Erdős-Moon.

• Theorem 2(K-S-T for hypergraph). For t ≥ 2,

exk(n,Kt:k) = O(nk−(
1
t
)k−1

).

• Remark 1. This implies π(Kt:k) = 0.

• Remark 2. Theorem 1 can imply theorem 2.
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• Proof of Theorem 2. Assuming Theorem 1 holds for k−1, we suppose there is a Kt:k-free
k-graph G with e(G) = ω(nk−(

1
t
)k−1

).

(Note :m(n) = ω(n) means m(n)/n has a sufficiently large lower bound for sufficiently
large n)

Recall : Let H be a k-graph with (d−1)n+t edges, then H has a subgraph J with δ(J) ≥ d
and |V (J)| ≥ t

1
k .

⇒∃ a subgraph ofG with δ(J) ≥ ω(nk−1−(
1
t
)k−1

) which is much larger thanO((nk−1−(
1
t
)k−2

)).
Then the link hypergraph Jv for v ∈ V (J) is a (k-1)-graph with

δ(J) ≥ ω(nk−1−(
1
t
)k−1

) ≥ ω(mk−1−( 1
t
)k−1

)

where m = |V (Jv)|. By Theorem1, Jv has

Ω((
d(v)(
m
k−1
))tk−1mt(k−1)) = ω(mt(k−1)−1)

copies of Kt:(k−1).

⇒ ∃ ω(mt(k−1)) copies of (v,K) where K = Kt:(k−1) ⊂ Jv.
By Pigeonhole Principle, ∃ a fixed K = Kt:(k−1) and v1...vt ∈ V (J) s.t K ⊂ Jvi ∀ i
⇒ ∃ Kt:k = K ∪ {v1...vt} which is a contradiction. This proves Theorem 2.

• Proof of Theorem 1. By induction on k. Base case k = 2 is just the Erdős-Moon
Theorem.

Suppose it holds for (k-1)-graphs. Given a k-graph G with e(G) = p
(
n
k

)
= Ω(nk−(

1
t

k−1
)) .

Let V1 = {v ∈ V : d(v) ≥ Ck(t)nk−1−(
1
t
)k−2} and V2 = V \V1. Since∑

v∈V2

d(v) ≤ O(nk−(
1
t
)k−2

) << nk−(
1
t
)k−1

≈ e(G),

almost all edges of G are in V1.

For S ∈
(
V (G)
t...t

)
where t...t contains (k − 1) t′s, Let

f(S) = #{v ∈ V (G) : v ∪ S induces a K
(k)
1,t...t in G} where t...t contains (k − 1) t′s.

For v ∈ V1, the link hypergraph Gv is a (k-1)-graph with d(v) ≥ Ck(t)nk−1−(
1
t
)k−2

edges.
By induction on k − 1 for Gv, Gv has

Ω((
d(v)(
n

k−1
))tk−1nt(k−1)) = Ω((d(v))t

k−1
n(k−1)t−(k−1)t

k−1
)

(k-1)-graphs.

Claim : #{K(k)
1,t...t in G}

≥
∑

v∈V1(G)

Ω((d(v))t
k−1

n(k−1)t−(k−1)t
k−1

)

≥ n(

∑
d(v)

n
)t

k−1
Ω(n(k−1)t−(k−1)t

k−1
)

= e(G)t
k−1

Ω(n(k−1)t−(k−1)t
k−1+1−tk−1

)

= pt
k
Ω(n(k−1)t+1)

= Ω(pt
k
n(k−1)t+1)
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where t...t contains (k − 1) t′s.

On the other hand,#{K(k)
1,t...t in G}=

∑
S∈(V (G)

t...t ) f(S). Therefore #{Kt:k in G}=

1

k

∑
S∈( V

t...t)

(
f(s)

t

)
≥ Ω(nt(k−1))

∑
f(S)t

|
(

V
t...t

)
|

≥ Ω(nt(k−1))(

∑
f(S)

nt(k−1)
)t

≥ Ω(nt(k−1))(pt
k−1

n)t

= Ω(pt
k
ntk)

where t...t contains (k − 1) t′s.

• Question. Why do we need e(G) ≥ Ω(nk−(
1
t
)k−1

)?

• Remark. Theorem1 does imply Theorem2. Let p ≈ n−(
1
t
)k−1

so that p
(
n
k

)
≥ (nk−(

1
t
)k−1

),

then Theorem1 gives Ω(pt
k
ntk) = Ω(ntk−t) copies of Kt:k. This proves Theorem 1.
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